熱門文章
popular articles185-6658-5580
2019-11-15 編輯:雷寧普 閱讀量:2012
廣東優(yōu)科檢測是專業(yè)第三方防雷檢測機構,實驗室具備防雷檢測資質,可提供電子產品雷擊浪涌測試服務,并可出具防雷檢測報告。接下來為大家介紹電子產品雷擊浪涌測試防護設計。
電子產品的浪涌抵抗能力要通過浪涌(沖擊)抗擾度測試來檢驗。該測試項目適用于電氣和電子設備在規(guī)定的工作狀態(tài)下工作時。對由開關或雷電作用所產生的有一定危害電平的浪涌(沖擊)電壓的反應。該測試項目適用于由公共供電網絡供電的電子電氣設備的交流電源端1:3測試。也適用于有室外電線、電纜連接的電源、控制、信號端口的測試。施加方式有共模和差模兩種方式.因此,產品設計中就需要針對這些端口的共/差模浪涌采取相應的抑制措施。
1. 電源端口的浪涌抑制
一個理想的交流電源浪涌抑制方案,它充分利用不同吸收器件各自的優(yōu)點。
理想工作狀態(tài)是:當浪涌到來時。TVS首先起動。會把瞬間過電壓精確控制在一定的水平;如果浪涌電流大。則壓敏電阻接著起動,并泄放一定的浪涌電流;兩端的電壓會有所提高,直至推動前級氣體放電管的放電。把大電流泄放到地。該電路匯集動作快、限壓低和放電能力強的優(yōu)點。中間的濾波電感起高頻濾波(吸收浪涌脈沖的前沿高頻能量)和級間隔離的作用。
對220 V/50 Hz的交流電源系統,第三級TVS可取380 V額定電壓產品,第二級的壓敏電阻可取470 V額定電壓產品。第一級氣體放電管選550 V額定電壓產品,第一級壓敏電阻可選400 V額定電壓產品。為了減少前級氣體放電管反映時間,可以在前級壓敏電阻上并聯一個1 000 pF到10 000 pF的高頻電容。
第一保護電路的電流容量應大于電路可能承受的最大電流容量。第二級、第三級保護電路的浪涌電流容量可以逐級遞減。對浪涌電壓不需太高測試等級的產品,可以省略第一級的氣體放電管和壓敏電阻串聯電路以及相應的級間隔離電感。對保護器殘壓不敏感的產品,可以省略第三級的TVS保護電路及相應的級間隔離電感。由于TVS吸流能力有限,一般不單獨在交流電源端口使用。該剪裁不影響上面舉例的保護器件額定電壓的選擇,但是保護電路的電流容量應相應地變化。
此保護電路有一點需要注意:若被測設備需耐受的浪涌電流不是很大,建議盡量不要使用第一級的氣體放電管;若直流電路工作電壓大于10 V,第一級氣體放電管不可使用。此時可通過提高第二級壓敏電阻的電流容量來滿足設備的浪涌等級要求。對保護器殘壓不敏感的產品,可以省略第三級的TVS保護電路。在此電路中,氣體放電管的額定電壓應大于等于工作電壓的1.8倍,壓敏電阻的額定電壓應大于等于工作電壓的1.5倍。最前級保護元件的電流容量應大于最大浪涌電流。后級保護電路的電流容量可以逐級遞減。
2. 通信端口的浪涌抑制
通信接口的浪涌抑制電路的技術要求較高,因為除了滿足浪涌防護要求外,還須保證傳輸指標符合要求。加上與通信線路相連的設備耐壓很低,對浪涌殘壓要求嚴格,因此在選擇防護器件時較困難。理想的浪涌抑制電路應是電容小、殘壓低、通流大、響應快。
通信接El組合保護電路,只是為滿足通信接口的高速信號傳遞的要求,將高頻濾波電感換成了PTC型的自恢復保險絲。該PTC在正常工作阻抗近似為零,對通信線路無任何不良影響,當浪涌到達時,TVS和壓敏電阻導通,大的浪涌電流通過PTC,PTC發(fā)熱后變?yōu)楦咦锠顟B(tài),從而分壓了大的浪涌電壓,保護了后續(xù)的浪涌抑制元件和通信電路;當浪涌消失后,PTC溫度下降,恢復正常的低阻狀態(tài),通信電路還原到正常狀態(tài)。
若通信電路對接口阻抗要求較寬,可以用低阻抗電阻代替PTC,以降低線路成本。此電路適用于非平衡傳輸的單路通信接口。對平衡傳輸的通信接口,T2通道也應如Tl通道對稱加上PTC。若為多路通信接口,每路的保護電路均與此相同。對平衡傳輸的通信接口來說,當設備為金屬外殼時,還需考慮設備與外殼地之間的浪涌沖擊,各通信線對地的保護電路,只需將T2換成外殼地即可。各保護元件的額定電壓應與通信接口的正常工作電壓的峰值相適應,通流電流應與最大浪涌電流相適應。
此保護電路需要注意的是:若通信接口電路中含有絕對值超過l0 V的直流信號(如電話網絡含有48 V直流),氣體放電管不可用;壓敏電阻電容較大,只適用于音頻通信信號傳輸。對不含直流的高頻接口保護電路,可取消第二級的壓敏電阻,這種保護電路大約可到幾十MHz的頻率(若通信電路含有直流,應選用滅弧電壓高于工作直流的氣體放電管;或保護電路僅由PTC與TVS組成,此時浪涌保護能力較低)。更高頻率的保護就主要是采用放電管了,否則很難滿足傳輸要求。
3. 天線端口的浪涌抑制
天線端口是一類非常容易遭受浪涌損壞的接口。無線通訊設備的外接天線端口一般需要與室外高處的天線連接以實現無線信號的收發(fā)。AV產品的天線端口也會與室外天線或CATV系統連接,這些接口都與室外引線連接。
盡管室外高處的天線一般都應有避雷針保護,進入室內后都還有前級(雷擊)浪涌保護器保護。但是,一方面避雷針和保護器未必保護得很到位(這些保護措施失效也很難被產品用戶發(fā)現,一般是出現浪涌對產品破壞之后才發(fā)現保護早已失效);另一方面,這些室外天線很可能由用戶自行安裝(如農村的室外電視天線),保護措施缺失;另外,產品的天線均為長期連接,除非產品移動,一般連接好后,不會經常斷開。
這些特點決定了產品天線端口很容易遭受浪涌的沖擊,不幸的是。與產品天線端口相連的電路都是對浪涌非常敏感的低壓電子電路,因此,對天線端口的浪涌保護非常必要。
射頻同軸天線端口組合保護電路,該電路前級保護電路由氣體放電管構成,后級保護電路由TVS與高頻扼流電感L構成。加入電感L的目的是防止天線上高頻信號被TVS極間電容短路到地。為減少保護電路的高頻衰減,去掉了級間隔離電阻。
這種保護電路的工作頻率上限可達2GHz。若天線端口含有直流(如給前級天線放大器供電),應選用滅弧電壓高于工作直流的氣體放電管。也有保護電路采用高通濾波器,因浪涌的能量頻譜集中在幾十赫茲到一兆赫茲之間,其能量主要集中在數十千赫茲以下,相對于天線端口的高頻工作頻率很低,可通過高通濾波器將浪涌從工作信號中分離加以吸收。對于點頻通信天線也可采用四分之一波長的短路線構成帶通濾波器,防雷效果更好。但這兩種方法都會將天線上傳送的直流短路,其應用范圍有限。
4. 其它信號/控制端口的浪涌抑制
對其它信號腔制端口,若端口接線來自室外或線長超過一定的長度,則相應端口就有遭受感應的浪涌沖擊損壞的危險,也需要采取相應的浪涌抑制措施。若工作信號為直流電平,其浪涌抑制方式可參考直流電源端口的浪涌抑制方式進行設計即可;若工作信號為中低頻信號,其浪涌抑制方式可參考通信端口的浪涌抑制方式進行設計;若工作信號為高頻信號,其浪涌抑制方式可參考天線端子的浪涌抑制方式進行設計。
但需要注意的是,若端口是由變壓器或光耦隔離的,為防止變壓器或光耦因浪涌擊穿,除接口線線間需要浪涌抑制外,接口線對產品的接地端之間也應有相應的浪涌抑制電路。為保證內外電路的電氣隔離,此處只可采用氣體放電管進行浪涌抑制。為保證氣體放電管浪涌擊穿后能正常滅弧,變壓器或光耦隔離的兩端應無大于10 V的直流電位差。
5. 地線反彈的抑制
當并聯型的浪涌抑制器發(fā)揮作用時.它將浪涌能量旁路到地線上。由于地線都是有一定阻抗的。因此當電流流過地線時,地線上會有電壓。這種現象一般稱為地線反彈。當浪涌抑制器的地與設備的地不在同一點,設備的線路實際上沒有受到保護,較高的浪涌電壓仍然加到了設備的電源線與地之間。
解決辦法是在線路(地)與設備的外殼(地)之間再并聯一只浪涌抑制器,或將兩地選擇在同一點。受到保護的設備與其他設備連接在一起。由于地線反彈的原因,另一臺設備就要承受共模電壓。 這個共模電壓會出現在所有連接設備1(受保護設備)與設備2(未保護設備)的電纜上。解決的方法是在互連電纜的設備2一端安裝浪涌抑制器。
相關文章